Powder Metallurgy structural components: comparative overview vs other competitive technologies

Advanced Engineering 2017
Birmingham (UK), 2nd-November-2017

www.ames-sintering.com
Table of contents

1. Powder Metallurgy: manufacturing process and components
2. Why Powder Metallurgy for structural parts?
3. Limiting factors for Powder Metallurgy
4. Comparison of Powder Metallurgy to competitive technologies by case studies
5. PM self-lubricating bearings
Complementary operations

- Sizing
- Impregnation/Sealing
- Machining
- Deburring
- Joining
- Cleaning
- Coating/Plating
- Steam Treatment
- Heat Treatment
PM structural components
PM soft magnetic components
Why PM for structural parts?

- Complex shapes
- High dimensional accuracy
- Reliability and repeatability in large series
- Self-lubrication
- Excellent surface finish
- Unique and isotropic materials

www.ames-sintering.com
Dimensional accuracy

PROCESSES

<table>
<thead>
<tr>
<th>Processes</th>
<th>ISO IT TOLERANCE CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand Mould Casting</td>
<td>7 8 9 10 11 12 13 14 15 16 17</td>
</tr>
<tr>
<td>Investment Casting</td>
<td></td>
</tr>
<tr>
<td>Hot Forging - Extrusion / Deep Drawing</td>
<td></td>
</tr>
<tr>
<td>Warm Forging - Extrusion</td>
<td></td>
</tr>
<tr>
<td>Cold Forging - Extrusion</td>
<td></td>
</tr>
<tr>
<td>Machining</td>
<td></td>
</tr>
<tr>
<td>Fine Blanking / Stamping</td>
<td></td>
</tr>
<tr>
<td>Rolling</td>
<td></td>
</tr>
<tr>
<td>Powder Metallurgy (P/M)</td>
<td></td>
</tr>
<tr>
<td>Powder Injection Moulding</td>
<td></td>
</tr>
</tbody>
</table>

- **Standard tolerance ranges**
- **Reachable ranges in special cases**

www.ames-sintering.com
Tooling Cost

<table>
<thead>
<tr>
<th>PROCESSES</th>
<th>COST (x1,000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>SAND MOULD CASTING</td>
<td></td>
</tr>
<tr>
<td>INVESTMENT CASTING</td>
<td></td>
</tr>
<tr>
<td>HOT FORGING</td>
<td></td>
</tr>
<tr>
<td>WARM FORGING – COLD FORGING</td>
<td></td>
</tr>
<tr>
<td>EXTRUSION</td>
<td></td>
</tr>
<tr>
<td>MACHINING</td>
<td></td>
</tr>
<tr>
<td>FINE BLANKING / STAMPING</td>
<td></td>
</tr>
<tr>
<td>DEEP DRAWING</td>
<td></td>
</tr>
<tr>
<td>ROLLING</td>
<td></td>
</tr>
<tr>
<td>POWDER METALLURGY (P/M)</td>
<td></td>
</tr>
<tr>
<td>POWDER INJECTION MOULDING</td>
<td></td>
</tr>
<tr>
<td>PROCESSES</td>
<td>PARTS (x1,000)</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>SAND MOULD CASTING</td>
<td></td>
</tr>
<tr>
<td>INVESTMENT CASTING</td>
<td></td>
</tr>
<tr>
<td>HOT FORGING - DEEP DRAWING</td>
<td></td>
</tr>
<tr>
<td>WARM FORGING / COLD FORGING</td>
<td></td>
</tr>
<tr>
<td>EXTRUSION</td>
<td></td>
</tr>
<tr>
<td>MACHINING</td>
<td></td>
</tr>
<tr>
<td>FINE BLANKING / STAMPING</td>
<td></td>
</tr>
<tr>
<td>ROLLING</td>
<td></td>
</tr>
<tr>
<td>POWDER METALLURGY (P/M)</td>
<td></td>
</tr>
<tr>
<td>POWDER INJECTION MOULDING</td>
<td></td>
</tr>
</tbody>
</table>

- Standard production runs
- Special production runs

www.ames-sintering.com
Limiting factor: SIZE

Limited by:

- **Compacting surface:** Depends on powder compressibility and press size.
 Orientative data: Press size 1,200 Tm max., compacting surface 180 cm2 max., outer diameter 200 mm max.

- **Length:** Limited by ejection forces, density gradient and press architecture.
 Orientative data: Length 80 mm max.

- **Raw material cost.**
 Orientative data: Steel rod or sheet: 0.7-1.6 Eu/Kg,
 PM steel: 1.1-2.8 Eu/Kg
Limiting factor: DENSITY

- High speed steels
- Aligned steels
- Structural steels
- Maleable cast iron
- Grey cast iron

Ultimate tensile strength (MPa) vs. Density (g/cm³)

<table>
<thead>
<tr>
<th>Sintered steels</th>
<th>Wrought steels</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2</td>
<td>7.0</td>
</tr>
<tr>
<td>6.4</td>
<td>7.2</td>
</tr>
<tr>
<td>6.6</td>
<td>7.4</td>
</tr>
<tr>
<td>6.8</td>
<td>7.6</td>
</tr>
<tr>
<td>7.0</td>
<td>7.8</td>
</tr>
<tr>
<td>7.2</td>
<td>8.0</td>
</tr>
</tbody>
</table>

Bending fatigue limit (MPa)

- $\alpha_k = 1$
- $\alpha_k = 2 \div 4$

Hardness Vickers

- $HV_{0.1}$
- HV_{10}

www.ames-sintering.com
Limiting factor: FORMABILITY
The compacting process

Die filling Compacting Ejection

Powder filling

Robust tooling

Ejectability
Compact integrity
Technologies comparison

Forging

Powder Metallurgy

Machining

Powder Metallurgy
Technologies comparison

Extrusion

Deep Drawing

Rolling

Powder Metallurgy

Powder Metallurgy

Powder Metallurgy

www.ames-sintering.com
PM self-lubricating bearings

Economy:
- No need of additional lubrication
- Maintenance-free

Reliability:
- Elimination of seizure risk
- Long life without wear

Performance:
- Extremely silent
- Low friction coefficient (up to 0.01)
- High dimensional precision
- Dynamic load up to 10 MPa
- Linear speed up to 8 m/s (30,000 rpm)
- Working temperature -60°C +230°C

www.ames-sintering.com
Bearings comparison

Rotational PV limit (orientative data)

- Hydrodynamic (with external lubrication)
- Sintered (bronze and iron)
- Ball bearing
- Bimetallic
- Plastic

PV (MPa·m/s) vs. Linear speed (m/s)
www.ames-sintering.com

THANK YOU

for your valuable time